If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2+27x=0
a = 16; b = 27; c = 0;
Δ = b2-4ac
Δ = 272-4·16·0
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-27}{2*16}=\frac{-54}{32} =-1+11/16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+27}{2*16}=\frac{0}{32} =0 $
| 4(x=1)^2=64 | | 4(2-32)=2x-27 | | 3x2-3x=18 | | 0=16x^2+27x | | (2+w)(2w-1)=0 | | 2/3x+1/8=3/16 | | 5a-7=43 | | -10x+23-(5x-3)=22 | | 2/3y+1/8=3/16 | | 3(2x+5)=-5x+3 | | 4x-2/3x^2/3=0 | | (4x-2)/3x^2/3=0 | | x^2-5x-6=30 | | -2(1-p)-5p=-5-2p | | 1200+10x=1500+8x | | y=(1.6)^3 | | 3/7=x-2/x+2 | | 3x=272x−5 | | 3+2(x+4)=-4x+7+2x | | 200-15(2x+3)-10x=20 | | 2x+30+x+90+90=360 | | -4-3n=7(-7+6n) | | 99x-7=8 | | y=0.1(1.23)^4 | | 2f-12-3f=60 | | 8x+4x-(12x)=0 | | y=1,200(1-0.02)^5 | | 5x+13=93 | | 8-2q=5-5q | | 3(x+4)-x=3x-5 | | -6a^2+81=0 | | 8x+4x-6=12x |